
In 2000 Forest Oil International shot a 312 km2 3-D seismic
survey in South Africa’s Block 2Aaround a well that, despite
testing 53 million ft3/d gas and 342 bbls condensate/d gas,
had been abandoned in 1986 (Figure 1). This well (AK-1) was
thought to have tested a small noncommercial structural trap.
The 3-D showed that the field, now designated Ibhubesi
Field, is in fact a giant regional stratigraphic trap. The 3-D
survey might only cover a small part of the southern extent
of the field, which may eventually produce 15 trillion ft3 of
gas.

Attribute processing and other inversion techniques were
used to predict the presence and properties of the reservoir,
to assess reserves, and to plan a drilling campaign to delin-
eate the field. Individual gas accumulations in meandering
fluvial channels and other component facies of the fluvial-
deltaic systems tract were clearly identified in the resulting
volumes.

Reservoir and drilling history. A four-well program was
undertaken to evaluate the field, and prove up a core area
with enough reserves to be economically developed. Figure
2 shows a structure map at the top of the gas-bearing inter-
val. Wells tested individual compartments containing 28-520
billion ft3; the total was 1.15 trillion ft3. The first well, A-K2,
tested 30 million ft3 and more than 600 barrels of conden-
sate per day from a 20-m pay sand on a 3/4-inch choke with
a flowing tubing pressure of 2200 psi. Reservoir character-
istics were better than expected: clean and well sorted with
average porosity of 21% (up to 25%) and almost no water
saturation. No water was produced and no significant reser-
voir pressure drawdown seen during the 12-hour test.

The second well, A-V1, had a 15-m gas-bearing sand of
similar quality to the A-K2 sand, but the drill string twisted
off before drilling a second, deeper sand. This sand was sub-
sequently penetrated in a sidetrack. The lowest gas sand in
A-V1 is deeper than the lowest proven gas and highest
proven water in A-K1, clearly showing that this is a sepa-
rate reservoir and stratigraphic trap.

The third well targeted the largest and brightest anom-
aly in the data set. It found two thick and porous sands as
predicted, but they contained low-gas saturation water. Later
application of elastic inversion (Figure 3) showed that these
sands had less rigidity than others in the area. This factor,
combined with high porosity, accounts for its high values in
the elastic cross-plot volume.

The fourth and final well was targeted at a feature that
looked like a preserved cut-off meander loop. There were
also secondary and tertiary targets. The well tested 71 mil-
lion ft3/d and 1340 bc/d from combined tests of the upper
two zones. This is the highest gas test rate achieved in any
well in the history of South Africa.

Bit by bit, as the well results came in, the exploratory
vision of a giant regional stratigraphic trap was proved. We
were completely successful in predicting the presence of

high reservoir quality sands on 10 occasions in five wells.
We predicted commercial gas content eight times—a success
rate of 80%. Porosity predictions were always within 2 PUs
of the target interval average net pay porosity. Thicknesses
ranged from about 30% less than predicted to about 30% more
than predicted.

Role of seismic inversion. Inversion was used to improve
the prediction of reservoir properties from the 3-D seismic.
These predictions should become more accurate as wells are
added. Thickness and porosity are fairly easy to predict, and
some distinction may be made between gas-saturated reser-
voir and wet reservoir. Although inversions can make quan-
titative predictions, they remain interpretive, seismic-based
data sets with limitations like band width, tuning and inter-
ference, noise, nonuniqueness, and so on. Thus, knowledge
gained through inversion should be interpreted and com-
bined with other geologic criteria such as trap configuration,
facies models, hydrocarbon charge, and migration routes to
assess a prospect.

Aneural network was applied in an unsupervised mode
to determine areas with similar seismic character (facies) or
in a supervised (with wells) mode to relate seismic charac-
ter to a particular geologic regime or reservoir properties. In
unsupervised mode, the network did a very good job of iden-
tifying and mapping individual fluvial channels. In the
supervised mode, the neural network predicted reservoir
quality at A-V1 and A-W1, and successfully predicted com-
mercial gas at both wells. Attribute inversion (using Kohonen
Self-Classifying Mapping) detected the gas/water contact in
the lower sand at A-K1 (Figure 3) and predicted a wet sand
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Figure 1. Map of Forest Oil blocks in South Africa.



at A-W1. Unfortunately, this work was not completed until
after A-W1 had been drilled.

Most examples in this paper are from cross-lines of the
3-D survey that tie A-K1, the discovery well for Ibhubesi
Field. Figure 4 is a log display from the reservoir interval in
A-K1. Many forward models have been done of this well
and of all wells in the field. The well contains good inver-
sion targets including resolvable gas sands—the “upper” and
“middle” sands (although there are actually two pressure
compartments in the upper sand with thin perched water).
Other targets are a thin and usually unresolvable water sand
and a thick, resolvable gas sand with a gas/water contact in
it.

An inversion is an attempt to predict rock properties
(porosity, thickness, fluid content, hydrocarbon saturation,
etc.) from seismic data. There are three fundamental types—
acoustic, elastic, and attribute. Each has different require-
ments for data input and differ in their predictive capability.
The right inversion to use depends primarily on the data and
an area’s stage of exploration or development.

When we talk about inversion as a specific process, usu-
ally we mean a numerical process that uses the seismic
response to predict rock properties such as velocity, density,
compressibility, porosity, and water saturation. An array of
methodologies claim to be able to do this.

The seismic method measures only four fundamental
rock-physics properties: P-wave velocity, S-wave velocity,
density, and anisotropy. Only the first three properties are
measured with the accuracy required for inversion. Inverting
seismic data to other rock properties implicitly assumes a
relationship between the property and one or more of these
fundamental properties. All types of inversion require some

form of constraint and need to be calibrated by tying the result
to real or simulated well data. In this paper, we group pop-
ular inversion methods into: acoustic, elastic, and attribute
inversion (Table 1).

In an exploration setting where little or no well control
is available, a simple acoustic inversion may be best. During
field development, when there is a lot of well control, an
attribute inversion will be more useful.

In our acoustic inversion, the seismic data were trans-
formed into a recursive inversion solution for porosity. A90°
phase shift occurs when the data are inverted. The event is
shifted so that the peak corresponds to the bed instead of its
boundaries. The volume can then be scaled for porosity and
calibrated by well control. Figure 5 shows examples from
Ibhubesi Field. We predicted unusually high (average 21%)
porosity at A-Y1 using these same data. This was confirmed
by drilling.

Some recursive methods allow input from geologic mod-
els and well control to constrain the inversion. Another
sophisticated approach involves solving the three-term
Bortfeld equation (Bortfeld, 1989). This can be considered an
acoustic method because it solves for VP, VS, and density but
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Figure 3. 3-D perspective of a cross-line through A-K1
looking east that shows the resulting Kohonen shape-
attribute results. Green = pay; yellow = wet sand. Note
transition from pay to wet. This corresponds to the
gas/water contact in the third sand in A-K1. The two
classes were then seeded through the volume. Red body
is the gas pay class and the blue is the wet sand class.
Note that the contact between the classes consist of two
flat segments and that the gas class always overlies the
wet class—compelling evidence that we are actually
imaging a gas/water contact.

Figure 2. Structure map on the top of the gas-bearing
interval showing well A-K1 well and subsequent wells
A-K2, A-V1, A-W1, and A-Y1. Note lack of structural
closure for A-K1. Mapped from a 3-D depth volume. CI
= 20. Datum is sea level.

Table 1. Grouping of popular inversion methods
Method
Acoustic

Elastic

Attribute

Results
Solves for Density 
and Velocity
Solves for
Compressibility,
Shear Strength,
and Rigidity
Uses wave
shapes, seismic
characters or 
derived features

Input Needed
Only stacked P-Wave

Shear or Gather data

Any form of seismic,
Acoustic/Elastic
Impedance

Predicts
Porosity,
Thickness
Porosity,
Thickness
Lithology,
Sw?
Porosity,
Thickness
Lithology,
Sw?



is not recursive. The terms of the equation represent the
intercept, gradient, and curvature of the offset amplitudes.
By solving for density, wet and gas-bearing sands might be
distinguished. The method requires preservation of true
amplitudes, offset angles out to the critical angle if possible,
and good quality, low-noise data.

More input is required but more predictive output can
be obtained by doing an elastic inversion. Elastic inversion
requires shear-wave information. If directly recorded shear-
wave information is not available, it can be estimated in a
number of ways based on AVO and P-wave data using some
simplified form of the Zoeppritz equations, Shuey’s equa-
tion, or a Castagna relationship.

Figure 6 is an example of an elastic inversion based on
a P-wave, S-wave crossplot method. This was the primary
volume used to site wells for the 2000-2001 drilling campaign
in Ibhubesi Field. Ten reservoir predictions were made on
the basis of this volume. All found porous reservoir and 8
(80% COS) found gas.

The goal of attribute inversion is to visualize seismic pat-
terns pertaining to a specific geologic interval. An unsuper-
vised neural network performs this task by clustering seismic
waveforms around a mapped horizon. Input to the neural
network is a set of seismic amplitudes. The number of seg-
ments and the time-gate relative to the mapped horizon are
user-defined parameters. Each segment is characterized by
a waveform-shaped class center (Figure 7). The network first
has to learn how to segment the seismic waveforms. This
training is done on a representative selection of seismic
waveforms. A training set is created by regular sampling at
every tenth in-line and cross-line.

The supervised approach requires a representative data
set. We train the network by feeding it examples from the
representative data set (the training set). The neural network
then learns how the input data is related to the desired out-
put. The supervised approach is a form of nonlinear, multi-
variate regression that is used to quantify or classify data.
Examples of quantification are networks that predict, from
the seismic response, such properties as porosity or pore vol-
ume. Popular supervised learning networks are multilayer
perceptrons (MCP) and radial basis functions networks (de
Groot, 1995).

In the unsupervised approach, the aim is to find struc-
ture in the data themselves, without imposing an a-priori
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Figure 4. Log display of pay interval in A-K1, DST
results, and inversion objectives.

Figure 5. (a)
Conventional P-wave
from the 3-D survey with
A-K1 well tie. (b)
Recursive inversion of
the line in Figure 5a.
Note that events have
been phase-shifted 90°
and that amplitudes are
all positive and in impe-
dence units. (c) Section
from Figure 5b scaled in
porosity units.

a)

b)

c)

Figure 6. A 300-m volume rendering of an elastic inver-
sion showing the five wells in Ibhubesi Field and the
reservoir anomalies they penetrated. A-K1 is the Soekor
well drilled in 1986. Forest Oil wells are A-K2, A-V1, A-
W1, and A-Y1, drilled in that respective order in 2000-
2001. Only A-W1 was wet.



conclusion. Unsupervised learning is used for data seg-
mentation—i.e., data clustering (Figure 8). The resulting
segments (e.g., clusters of similar seismic waveforms at the
reservoir level) remain to be interpreted. Popular networks
that use unsupervised learning are the unsupervised vec-
tor quantifier (de Groot, 1995) and Kohonen feature maps
(e.g., Lippmann, 1989).

In interpreting neural network patterns, one must
account for the fact that the seismic response is smeared
across overlying and underlying sequences. Response from
some units may interfere with those from other levels. If
the stratigraphic intervals are not parallel, the extraction
window cuts through the underlying or overlying geol-
ogy, and the results become difficult to interpret. However,
even with these limitations, we can still extract valuable
geologic and petrophysical information from observed
patterns. A qualitative interpretation can be based on geo-
logic insight. A more quantitative interpretation involves
analyzing the seismic waveforms of each segment in terms
of geologic/petrophysical variations using real and sim-
ulated wells.

Pseudo wells. Adding pseudo wells can increase the sta-
tistical database for training a neural network. Pseudo
wells, which simulate the results of drilling, have well logs
but no spatial locations. They can be used to quantify
waveform segmentation results (also known as seismic

facies maps). In this case study,
they were used to create the repre-
sentative learning set for a super-
vised neural network. The
simulation is based on a con-
strained Monte Carlo procedure
and is built around an integration
framework, a hierarchical descrip-
tion of the subsurface units. In this
study, pseudo wells were needed
because only three actual wells had
been drilled at the start of the pro-
ject.

The seismic input for network
training came from synthetic seis-
mic (near- and mid-offset) and
acoustic impedance traces of 40
pseudo wells. Seismic waveforms
of [-20,20] ms length for near- and
mid-offset were extracted relative
to a reference time, sliding with 4-
ms steps. The amplitude of the syn-
thetic impedance trace at the
sliding reference time serves as an
additional input node to the neural
network. Figure 9 shows the neural
network topology for the porosity
prediction. The output consisted
of the amplitude of either the
porosity trace or the pay flag trace.
The variable called pay flag is sim-

ulated as a Boolean variable (1 indicates gas-filled sand and
0 indicates brine-filled sand or shale).

Both were constructed by converting the depth curve
to two-way time using the velocity log. The time curve was
subsequently resampled with an antialias filter to 4-ms
sampling.

In Table 2, the performance is shown for the gas prob-
ability prediction to monitor the neural network during
training and to stop training before overfitting sets in.
Overfitting occurs when the network loses its generaliza-
tion ability. To avoid overfitting, the two actual wells were
used as test data during the training of the network.

The trained networks were applied to the seismic and
impedance cube every 4 ms in a time slice of 0-250 ms rel-
ative to the mapped upper peak horizon, yielding a poros-
ity and pay flag prediction cube. Figure 9 shows fully
connected MLP network to predict the porosity, and Figure
10 shows a slice through the porosity cube 60 ms below
the Upper Peak horizon. Figure 11 is an in-line through
the gas probability cube. The closer the value is to 1 or
higher, the more likely it is that we are dealing with gas-
filled sand. As such the output can be considered to rep-
resent the gas sand probability.

To validate the inversion method, the network was
applied to real wells AK-1 and AG-1. Because the real well
data were not used to train the neural network, the real
wells are blind test locations. Figure 12 shows the result
for pay flag. Each plot shows two curves: the actual pay
flag trace in pink and the trace predicted by the neural net-
work in blue. From the predictions on well logs it can be
observed that, in general, the neural network is quite capa-
ble of transforming acoustic and elastic properties into the
target gas probability response. Note the blue curve is not
the actual gas probability but the predicted likelihood not
scaled to 1. The same applies to the porosity inversion.
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Table 2. Neural network performance for gas probability

43.13 %
7.26 %

50.40 %

6.86 %
42.74 %
49.60 %

50 %
50 %
Total 
misclassified
14.12 %

5.88 %
9.80 %

15.69 %

0.98 %
83.33 %
84.13 %

6.86
93.14
Total 
misclassified
10.87 %

Train data (balanced) Test data (AK-1, AG-1)

Figure 7. Results for UVQ analysis over time gate [-4,96] relative to Upper Peak
horizon.



Play analysis and cost benefit of inversion. Fortunately
there is enough historical data to do some simple play
analysis to quantify the benefit of 3-D inversion in risk
reduction (or COS) and added value. Prior to the present
drilling campaign, 14 wells had been drilled in the play. It
could be argued, being fairly generous, that three wells
could have been commercial (A-K1, A-G1, and A-F1),
resulting in a COS based on 2-D seismic of 21%. With the
benefit of 3-D inversion, we had a COS of 75% (3/4 suc-
cesses). So application of 3-D inversion improved the play
COS by 54%. We estimate that this resulted in cost savings
of US$15.2 million in dry hole costs and an added reserve
value of $US216 million—savings that exceed the cost of
the 3-D seismic and inversion work by about two orders
of magnitude—a great investment. The cost of the 3-D
survey was $US2.5 million and the inversion about $US300
000.

Conclusions. Forest Oil expects improved results from future
drilling in this area. 2-D data beyond the 3-D survey show

the play has considerable extent. The campaign has proved
up about 1 trillion ft3 in seven inversion anomalies.
Exploration finding costs have been about 3.8 cents/mcfg
reserves. Had elastic and attribute inversions been finished
in time to impact the drilling program, we might have
avoided drilling the wet well. It has been a remarkable tech-
nical success and a tribute to the power of seismic inversion.

Suggested reading. “Seismic characters and seismic attributes
to predict reservoir properties” by Aminzadeh and de Groot
(Proceedings of SEG-GSH Spring Symposium, 2001).
“Geometrical ray theory: Rays and traveltimes in seismic sys-
tems (second-order approximation of the traveltimes)” by
Bortfeld (GEOPHYSICS, 1989). “Relationship between compres-
sional and shear-wave velocity in clastic silicate rocks” by
Castagna et al. (GEOPHYSICS, 1985). “Geologic log analysis using
computer methods” by Doveton (Computer Applications in
Geology, AAPG, 1994). “Detection of gas in sandstone reservoirs
using AVO analysis: a 3-D case history using Geostack tech-
nique” by Fatti et al. (GEOPHYSICS, 1994). “Seismic reservoir char-
acterization using artificial neural networks” by de Groot
(Mintrop Seminar, Münster, 1999). “Evaluation of remaining oil
potential with 3-D seismic using neural networks” by de Groot
et al. (1998 EAGE Annual Meeting). “Monte Carlo simulation
of wells” by de Groot et al. (GEOPHYSICS, 1996). Seismic Reservoir
Characterization Employing Factual and Simulated Wells by de
Groot (doctoral dissertation, Delft University Press, 1995).
Learning Principles in Dynamic Control by Kavli (doctoral dis-
sertation, University of Oslo, 1992). “Pattern classification using
neural networks” by Lippmann (IEEE Communications Magazine,
1989). “Mining and fusion of petroleum data with fuzzy logic
and neural network agents” by Nikravesh and Aminzadeh
(Journal of Petroleum Science and Engineering, 2001). “Seismic-
guided estimation of log properties” by Schultz et al. (TLE,
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Figure 8. UVQ network topology. Sample X indicates
amplitude X ms below mapped reference horizon.
Number of nodes in middle layer indicates number of
segments. Output is the index number of the winning
segment and the “degree-of-match.”

Figure 9. Fully connected MLP network to predict the
porosity. Sample X means amplitude X ms below Upper
Peak horizon.

Figure 10. Predicted porosity for a time slice through the
porosity cube 60 ms below Upper Peak horizon.



1994). “A simplification of the Zoeppritz equations” by Shuey
(GEOPHYSICS, 1985).  LE
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Figure 12. Gas probability as predicted by MLP neural
network (blue) plotted against actual pay flag (pink) in
AK-1 (top) and AG-1 (bottom). The curves for AG-1 do
not align perfectly due to a small time shift.

Figure 11. Predicted
gas probability for
in-line 2463. Black
line is Upper Peak
horizon. AK-1 was
drilled at cross-line
3181.


